Penerapan Data Mining Untuk Penentuan Penerima Beasiswa Dengan Metode K-Nearest Neighbor (K-NN)
نویسندگان
چکیده
Dalam beberapa instansi pengelolaan beasiswa masih menggunakan microsoft excel dan pemilihan penerima seleksi administrasis ecara manual. Salah satu pengolahan data dalam jumlah yang besar adalah mining. Oleh karena itu penelitian ini bertujuan untuk menerapkan mining dengan metode k-nearest neighbor (K-NN) penentuan beasiswa. Metode pengumpulan private, studi literatur, wawancara. Tahapan yaitu cleaning, selection, transformation, knowledge deiscovery, pattern evaluation, presentation. Pengujian sistem confusion matrix mengetahui nilai akurasi. Hasil dari klasifikasi menentukan dimana hasil pengujian kurva ROC (Receiver Operation Characteristic) di peroleh akurasi terbaik sebesar 77% AUC (Area Under Curve) 0,90 training 115, testing 555 K 4. Karena berada diantara rentang 0.80 – 0.90, maka tersebut termasuk kategori good classification (sangat baik).
منابع مشابه
k-Nearest Neighbor Classification on Spatial Data
Classification of spatial data streams is crucial, since the training dataset changes often. Building a new classifier each time can be very costly with most techniques. In this situation, k-nearest neighbor (KNN) classification is a very good choice, since no residual classifier needs to be built ahead of time. KNN is extremely simple to implement and lends itself to a wide variety of variatio...
متن کاملK-Nearest Neighbor Classification Using Anatomized Data
This paper analyzes k nearest neighbor classification with training data anonymized using anatomy. Anatomy preserves all data values, but introduces uncertainty in the mapping between identifying and sensitive values. We first study the theoretical effect of the anatomized training data on the k nearest neighbor error rate bounds, nearest neighbor convergence rate, and Bayesian error. We then v...
متن کاملDrought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملFUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
متن کاملUnsupervised K-Nearest Neighbor Regression
In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Techno: Jurnal Fakultas Teknik Universitas Muhammadiyah Purwokerto
سال: 2023
ISSN: ['1410-8607', '2579-9096']
DOI: https://doi.org/10.30595/techno.v24i1.9084